

Safety Considerations for Operation of Small Unmanned Aerial Vehicles in Civil Airspace

R. Weibel & R. John Hansman

MIT Joint University Program Quarterly Meeting

23 October 2003

Current Unmanned Aerial Vehicles

Motivation

- Unmanned Aerial Vehicles (UAVs) provide public benefit for a variety of applications
 - National Defense
 - Disaster Response
 - Homeland Security/ Law Enforcement
 - Traffic Surveillance
 - Weather Monitoring
 - Communications Relay

• Military operations raised awareness

 Utilized successfully in several recent conflicts – Kosovo, Afghanistan, Iraq

Commercial/Civil applications have been demonstrated

- Test flights over coffee plantation in Hawaii and winery in California
- Coast Guard order for up to 69 Eagle Eye tilt-rotor UAVs for maritime surveillance as part of Deepwater program

• Large opportunities exist for small-scale UAV's

- Miniaturization trend in electronic equipment; sensors, datalink, etc.
- Investigation required for influence of vehicle mass on risk

- Lack of rules/ regulations creates barrier to commercial operations
 - Lengthy certificate of authorization (COA) process for UAV flight approval in NAS
- Current federal air regulations did not anticipate operation of controlled unmanned aircraft in civil airspace
 - No specific part or definition related to unmanned aircraft
 - Safety analyses presume safety of occupants of aircraft guarantees safety of public on ground

Goal: Investigate concepts of operation and risk mitigation strategies that allow UAVs to be operated with minimal restrictions to achieve the maximum public benefit

- Appropriate Standards
 - Uncertainty over jurisdiction for UAV regulation, definition of aircraft
 - FAA methodology and safety targets used

• Preliminary Safety Analysis for a Conceptual UAV System

- 1. Preliminary Examination/ Categorization of Possible Adverse Effects
- 2. Estimation of risk of effects
- 3. Identification and categorization of mitigation strategies to control risk
- 4. Implications for restriction/ requirements for UAV operation

Critical Hazards Identified

- High energy ground impact
- Mid-air collision with a another aircraft

• Risk Quantified as a Function of UAV Mass

- Order of magnitude analysis to compare risk of critical hazards to target levels of safety
- Determination of vehicle reliability to meet target level of safety

Target Level of Safety

- Target Level of Safety (TLS) the design criterion for probability of occurrence of adverse events
 - Each event has a given classification of severity catastrophic, hazardous, major, or minor
 - Each level of severity has a target level of safety associated with it

• Relevant Classifications for Midair and Ground Exposure Risks

- Hazardous (TLS of 10⁻⁷ events/hour)
 - "Serious or fatal injury to small number of occupants of aircraft (except operators)"
 - ° "Fatal injury to ground personnel and/or general public"
- Catastrophic (TLS of 10⁻⁹ events/hour)
 - ° "Results in multiple fatalities and/or loss of the system"

Uncertainty in Appropriate Target Level of Safety

 Analysis performed at TLS of 10⁻⁸ for ground exposure, order of magnitude greater than TLS for Hazardous

Preliminary Ground Fatality Probability Formulation

$$\frac{P(F)}{hr} = \frac{P(Inc)}{hr} P(Exp|Inc) P(F|Exp)$$

Where:

- P(F)/hr is the *fatal accident rate*: the probability of fatal injury to a person on the ground per hour of flight set by the target level of safety
- P(Inc) is the *vehicle reliability:* the probability of an incident on the vehicle leading ground impact
- P(Exp | Inc) is *exposure probability*: the area-based probability that a person on the ground is exposed to a lethal field of debris from the vehicle

 $P(Exp | Inc) = A_{exp}\rho$ $P(Exp | Inc) = A_{exp}\rho$ is the average area of lethality due to a UAV ground impact, approximated as the frontal area of UAV ρ is the population density of the area, based on 2000 U.S. Census data

P(F | Exp) is the *(un)protection factor*: the probability of fatal injury given the exposure to a lethal vehicle debris field

•Estimated as a percentage of the population exposed to the vehicle at any point in time, recognizing that some persons will be protected by vehicles or buildings

Ground Exposure Analysis

Vehicle		Weight	Frontal Area	P(F Exp)
Northrop Grumman Global Hawk		25,600 lb	970 ft ²	90%
IAI Scout		351 lb	5 ft ²	25%
Aerovironment Pointer	X	9.6 lb	1.7 ft ²	10%
Aerovironment Black Widow		0.14 lb (2.16 oz)	0.26 ft ²	5%

Global Hawk Reliability Requirements to meet TLS of 10⁻⁸/hr

Scout Reliability Requirements to Meet TLS of 10⁻⁸ /hr

Pointer Reliability Requirements to meet TLS of 10⁻⁸ /hr

MIT **Black Widow Reliability Requirements to meet TLS of 10⁻⁸ /hr**

% of US

by Area

72.4% 26.8%

0.7%

0.01%

12

Preliminary Midair Exposure Risk Analysis Method

- Source
 - Enhanced Traffic Management System (ETMS) Aircraft Surveillance Data for a typical weekday (January 9th 2003)

Assumptions

- Uniform distribution of flights from 0 to 10,000 ft MSL
- Uniform distribution of flights horizontally
- Uniform distribution of flights throughout the day
- Velocity of threatened aircraft large compared to UAV cruise speed, can therefore treat UAV as static
- Threatened aircraft completely transverses airspace segment within hour
- Exposure area of threatened aircraft is equal to the frontal area of a Boeing 757

Formulation

- From the UAV perspective, several airplanes transit through the airspace creating exposure volumes
- If the exposure volume intersects the UAV, a collision has occurred

Preliminary Midair Exposure Risk Formulation

$$\frac{N(C)}{hr} = \frac{N(a/c)}{hr} \frac{V_{exp}}{V_{air}}$$

Where:

N(C)/hr is the *collision rate*: set by the target level of safety

N(a/c)/hr is the rate of aircraft through the airspace: sets the number of times the exposure area will sweep through the airspace

V(exp) is the exposure volume

 $V(exp) = A_{exp}d_{air}$

A_{exp} is the vulnerable area of the threatened aircraft in a collision with the UAV
d_{air} is the distance travelled by the threatened aircraft through the airspace

V(air) is the volume of the airspace segment

Midair Collision Risk Results

Midair Collision Risk Results

Midair Collision Risk Results Atlanta, GA

- Significant Area of U.S. with Ground Exposure Risk Below the Target Level of Safety for small UAVs
 - Risk increases with vehicle mass
- Significant Amount of Airspace with Exposure Risk Below the Target Level of Safety
 - Areas around major airports are above the target level of safety
 - Risk Does not vary significantly with mass for small vehicles
- Opportunities may exist to allow a class of small UAV's to operate with limited restrictions
 - Limiting operation in airspace near airports or over congested areas may achieve target level of safety
- Mitigation Strategies Are Available to Further Reduce the Risk
 - Vehicles can be designed with capabilities to limit energy of impact or likelihood of midair collisions or ground impact

Preliminary Mitigation Possibilities

- Design/ Maintenance
 - Sets reliability of components/ frequency of failures, mass and energy of accident
- Operator Intervention
 - Skill level of operator influences recovery from failures and safety of routine operation

Emergency Management

 Vehicle systems that reduce energy of impact given a loss of vehicle – parachutes, flight termination, autorotation

Operating Restriction

- Ensures that when a failure occurs, less likely to impact general public
- Building/ Other Aircraft Response
 - Determines how likely it is that destruction of UAV will harm other people or property

On-Vehicle Protection

Extra-Vehicular Protection